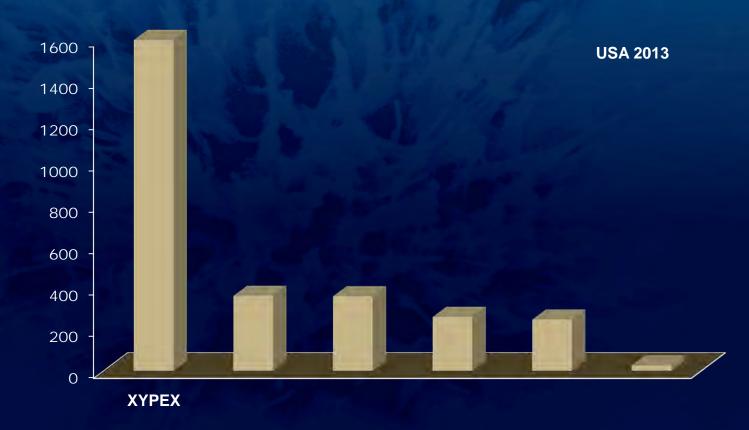


Xypex Chemical Corporation

- Founded 1969 in Vancouver, British Columbia
- Concrete Waterproofing & Protection by Crystallization
- The original and world standard in crystalline technology
- Present in over 80 countries worldwide
- ISO 9001:2015 and CE certified

Commissioned by JAERI



Leader

Number of specifications of Xypex Crystalline Technology

Hydrostatic Pressure

- Dams
- Canals
- Tanks
- Reservoirs

Water Table

- Rivers
- Lakes
- Seas
- Mountains

Chemical Attack

- Water Treatment
- Waste Water Collection and Treatment
- Industry
- Agriculture
- Environmental

Environmental Attack

- Carbonation
- Chloride
- Sulfate
- Freezethaw

Waterproofing Failure

- Coatings
- Membranes
- Cementitious

Porous Concrete

- Mix-design
- Type of structure
- Construction conditions
- Poor workmanship

- Cracks
- Cold joints
- Construction joints
- Poor consolidation

Cracks

The most common causes of cracking in walls and slabs are:

- Drying Shrinkage
- Thermal Cracking
- Strain Formed Cracks
- Settlement
- Plastic Shrinkage Cracking
- Rebar Corrosion

Key Problems and Costs

Four phases of concrete corrosion

Phase 1	Design, construction and concrete curing	\$ 1
Phase 2	Corrosion initiation processes are underway, but increased damage has not yet begun	\$ 5
Phase 3	Increase in damage has just begun	\$ 25
Phase 4	Increase in corrosion is advanced with extensive damage clearly evident.	\$125

Equivalent cost of \$1 spent in Phase 1

XYPEX **Concrete Surface Protection**

ADVANTAGES

LIMITATIONS

LINERS

HDPE, PVC, PE

- Impermeable
- Excellent chemical resistance especially in areas where pH is lower than 3.0
- Visible protection system

- Errors in workmanship
- Seam failure
- •False spark test
- •Liners can be affected by negative side pressure
- One breach can affect the integrity of the entire system
- Expensive

CEMENT BASED LINERS

Portland, high alumina, speciality

- Reduce inflow
- Structural integrity
- Some corrosion protection
- Withstand negative side pressure
- No VOCs

- Physical permeability barrier
- •Application requires expertise
- Specialized equipment
- •Residual overspray material difficult to remove

Liner Problems

Spark Test

Seams

XYPEX

Concrete Surface Protection

ADVANTAGES LIMITATIONS

COATINGS

Epoxies, urethanes, polyurethanes, coal tar epoxies

- Impermeable
- Good chemical resistance
- Visible protection system
- Costly surface preparation required
- Installation errors leading to pin holes and thin spots
- No crack healing
- Concrete needs to be dry
- Limited abrasion resistance
- Single breach affects integrity of entire system
- Performance deteriorates over time
- Do not resist negative side vapour and liquid pressure

CEMENT BASED COATINGS

Polymer cement mortars

- Easy application
- Inexpensive
- Can be applied to moist concrete •
- Significant and costly surface preparation required
- Limited resistance to hydrostatic pressure
 - Can be pushed off by negative side hydrostatic pressure
 - Limited abrasion resistance
 - Poor crack bridging, no crack healing
 - Limited chemical resistance
 - "One scratch" affects integrity of entire system
 - Performance deteriorates over time

Coating Problems

Negative side water pressure

Blistering

Pinholes

Limited Lifespan

Admixtures

	ADVANTAGES	LIMITATIONS
HYDROPHOBIC ADMIXTUR	ES	
 Long-chain fatty acids (ammonium or calcium stearate) Vegetable oils Petroleum derivatives (mineral oils, paraffin wax, bitumen emulsions) 	 Added at batch plant Low labor costs Low risk of error Water repelling Effective where no presence of hydrostatic pressure 	 Low performance under hydrostatic pressure Diminishing performance over time Not recommended by ACI for concrete under hydrostatic pressure No crack bridging or healing properties
ANTI-MICROBIAL AGENTS		
Anti-microbial agents dosed into concrete at time of batching	 Interrupts the microbial induced corrosion process Newer technology (1996) but appears to be effective Can be added to concrete 	 •Moderately new system, no real long term field exposure •Expensive •Provides corrosion protection only, does not stop water infiltration or ex-filtration

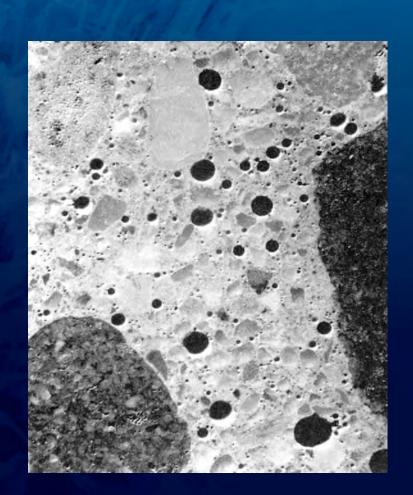
Repair systems

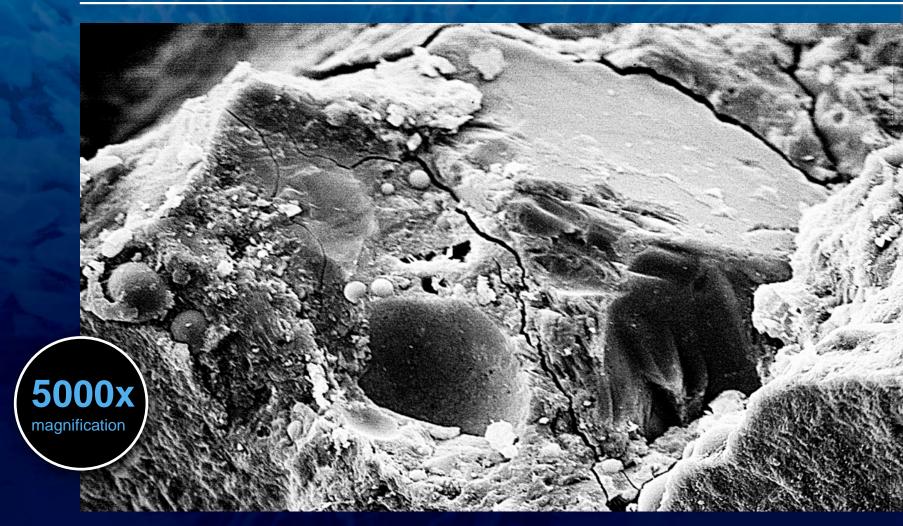
	ADVANTAGES	LIMITATIONS
INJECTION SYSTEMS	LEVER WY	
EpoxyPolyurethane	 Epoxies reinstate structural integrity Polyurethanes allow movement Polyurethanes can be applied on wet concrete Effective for wider cracks 	 High cost Requires high level of application expertise Requires specialty equipment Poor aesthetics of typical injection job Complicated re-working Will not heal new cracks
ROUT & REPAIR		
Chipping out of crack then filling with cement-based mortar	 Inexpensive Can be applied to wet or moist concrete & actively leaking cracks Moderate level of expertise required No special equipment needed 	 Not a full depth repair Will not cure future cracking Not for cont. moving cracks

Injection Systems Limitations

Epoxy & Polyurethane

Our System


Concrete Waterproofing by Crystallization


Composition & Characteristics

- Composed of a mixture of rock, sand, cement and water.
- To be workable, more water than needed for cement hydration is used.
- Excess water bleeds out and leaves a network of capillaries and pores.
- As it dries, concrete shrinks and changes volume causing micro and macro cracks.

Micro Cracks

The nature of concrete can be determined by petrographic examination.

Permeability

Crack

Micro Crack

Transition Zone

Capillary Pore

1mm to 10mm

0.1mm to 3mm

<0.0001mm to 0.1mm

0.01 mm to 0.05 mm

0.0001mm to 0.001 mm

Permeable in several, different size scales.

What is Xypex?

Coating

Admixture

Dryshake

How It Works

Calcium Hydroxide and other by-products of cement hydration

Crystalline
Waterproofing
Chemicals

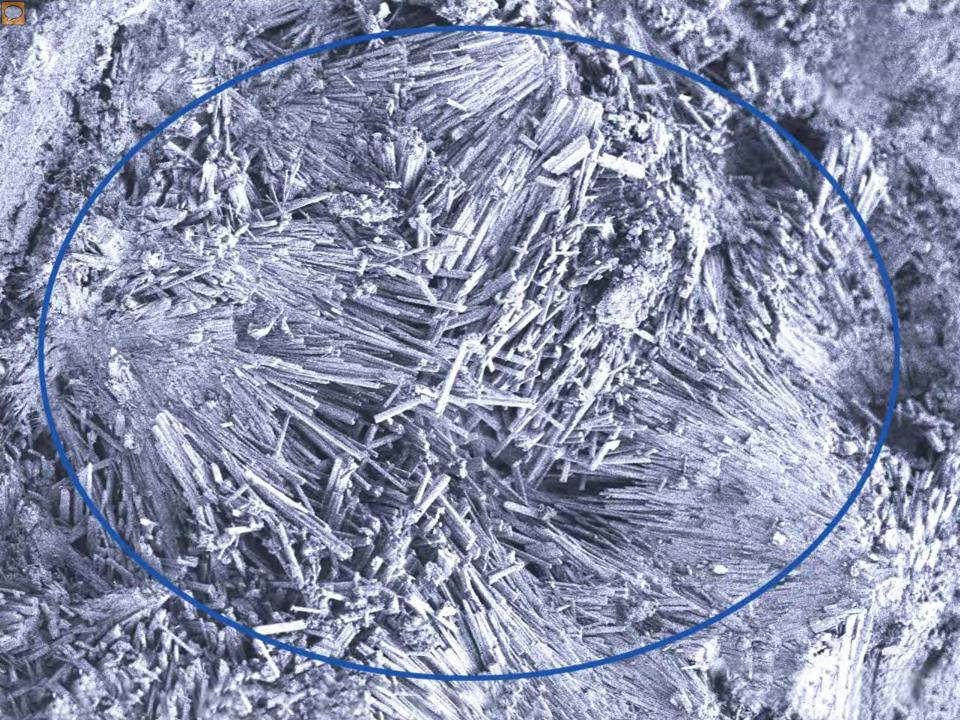
Non-soluble crystalline formation permanently fixed within the concrete's pore structure

Crystalline Formation

By-products of cement hydrations

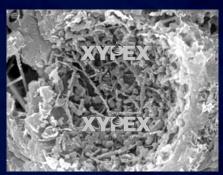
Crystalline Formation

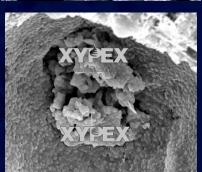
By-products + Xypex



Crystalline Formation

Non-soluble crystalline structure





The investigation revealed an extensive manifestation of typical Xypex crystalline precipitations, varying in size and complexity according to the mineral and metallic salts from which they have developed.

What is Xypex?

- Becomes an integral, permanent part of the concrete matrix.
- Seals concrete from the penetration of water and other liquids from both the negative and positive side, even when subjected to hydrostatic pressure.
- Heals static cracks up to 0.4 mm, or 0.8 mm from both sides.
- Highly resistant to chemicals where the ph range is from
 3.0 11.0 in constant contact and 2.0 12.0 in periodic contact.
- Cannot be punctured or damaged like a liner or surface coating.
- Enhances the durability of concrete.

Additional Advantages

- Not affected by humidity, ultraviolet light and oxygen levels
- Protects from freeze thaw
- Increased compressive strength
- Reduced shrinkage crack
- Is non-toxic
- Does not contain VOCs
- Does not produce any fumes
- Approved for use in potable water structures

Where is Xypex used?

- Hydrostatic Pressure
 - High Water Table
 - Tanks, Pools, Reservoirs, Dams
 - Tunnels
- Harsh Chemical Environments
 - Marine
 - Industry & Agriculture
 - Waste Water Collection & Treatment
 - Carbonation and Sulphate Attack
- Repair and Rehabilitation
 - Negative side after coating or membrane failure
 - Wet/Most concrete

Xypex and Concrete Properties

Xypex will have no negative effect on

- Slump
- Set time*
- Air
- Shrinkage
- Compressive strength

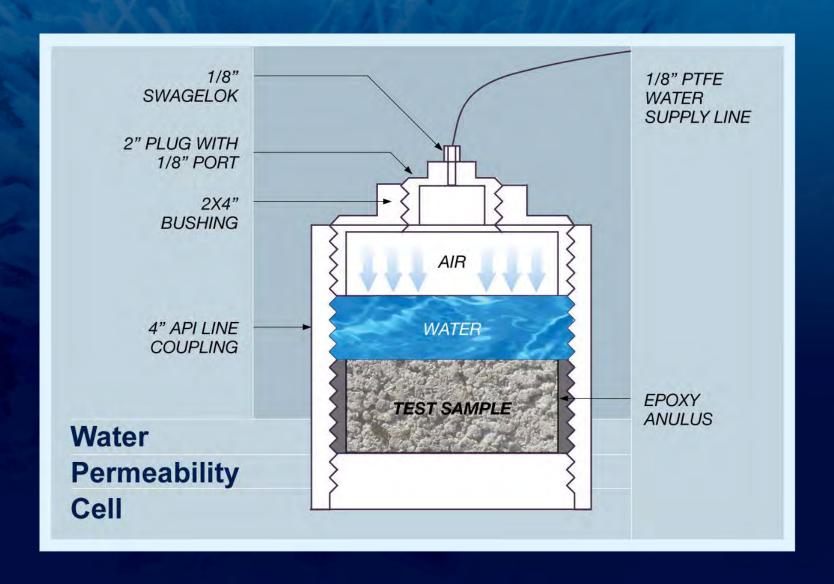
SCMs & Other Additives

Xypex can be used in conjunction with SCMs and additives

- Fly-ash
- Slag
- Silica fume
- Set retarders
- Water reducer
- Super plasticizers
- Air-entrainers

Trial batches always recommended

Independent Testing


Xypex has been independently tested worldwide for these characteristics

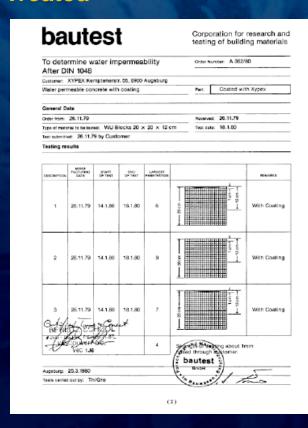
- Permeability
- Chemical Resistance
 - Acids
 - Sulfates
- Carbonation
- Compressive Strength
- Crack Sealing
- Scanning Electron Microscopy (SEM)

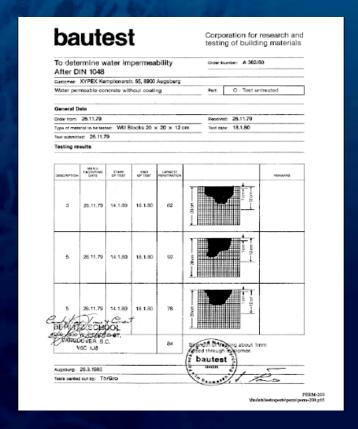
Permeability

Permeability

Taywood Engineering, CRDC C48-73, Singapore

Sample Reference		Control Concrete				Xypex-treated Concrete							
Date of Cast			22/01/97					14/01/97					
Date of Coring		30/01/97		20/02/97		22/01/97		2/12/97					
Age of Curing (days)		8		29		8.		29					
Specimen Size (mm)		150 x 50			150 x 50								
Specimen Refere	nce	1	2	3	1	2	3	1	2	3	1	2	3
Volume of water re through the samp													
At 1 bar on	1st day	0	0	0	0	0	0	0	0	0	0	0	0
At 2.4 bar on	2 nd day	0	0	0	0	0	0	0	0	0	0	0	0
At 4.2 bar on	3 rd day	0	0	0	0	0	0	0	0	0	0	0	0
At 7.0 bar on	4 th day	0	0	0	0	0	0	0	0	0	0	0	0
	5 th day	10	0	4	10	0	0	0	0	0	0	0	0
	6 th day	30	20	25	74	13	0	0	0	0	0	0	0
	7 th day	65	20	60	78	20	0	0	0	0	0	0	0
	8 th day	70	30	60	45	10	0	0	0	0	0	0	0
	9 th day	70	30	60	35	10	0	0	0	0	0	0	0
	10 th day	70	30	60	46	10	0	0	0	0	0	0	0




Permeability

DIN 1048, Bautest, Germany,

Treated

Untreated

Untreated control sample had average 84 mm of water penetration. Xypex treated control sample had average 6 mm of water penetration. Hydrostatic pressure equivalent to 224 ft of hydraulic head.

Chemical Resistance

Sulfuric Acid Exposure

Chemical Durability, Iwate University, Tokyo, Japan

The typical means of evaluating the ability of the Xypex treatment to provide chemical resistance include: measuring amount of mass loss, length change or relative dynamic modulus of elasticity.

Before Soaking

UNTREATED XYPEX

5 Weeks

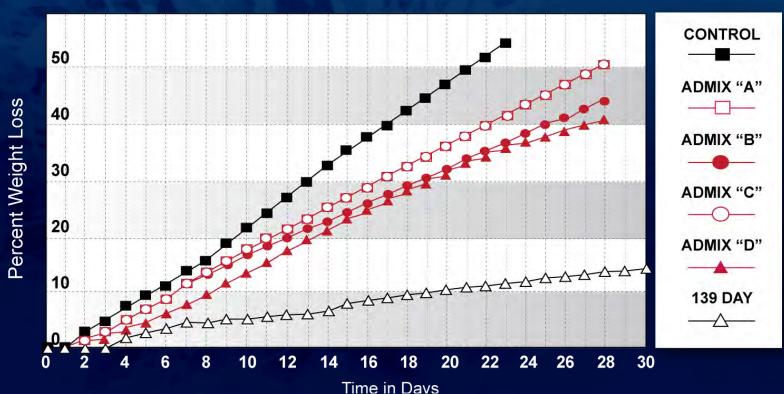
UNTREATED

XYPEX

10 Weeks

UNTREATED

XYPEX



Chemical Resistance

Sulfuric Acid Exposure

Aviles Engineering, Texas, USA

- •40 day cure acid comparison test in 7% H₂(SO₄)
- •Control, 3%, 5% and 7% Admix (Regular Grade)
- Curing periods were varied to determine effects

Chemical Resistance

Ammonium Sulfate Exposure

Taywood Engineering, Sydney, Australia

- •1 molar 132 g/l
- •Six mixes: control, low slag cement, silica fume, high slag cement, silica fume cement, Xypex Admix

	MIX DESIGNATION					
Component	GB80	GP	LH	SR	SF	ADMIX
Total Percentage Weight Loss	14.60	12.00	28.40	7.20	8.80	8.80
Loss Percentage Length Change	0.01	_	0.12	0.00	-0.01	-0.02

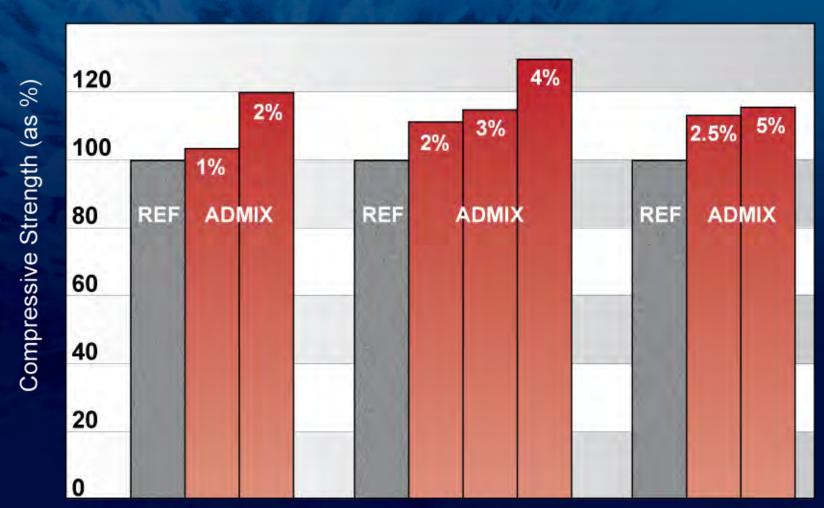
Note 1: Total Percentage Weight Loss is given for 25 weeks exposure.

Note 2: Percentage Length Change is given as the change compared to the GP mix, at 25 weeks.

Carbonation

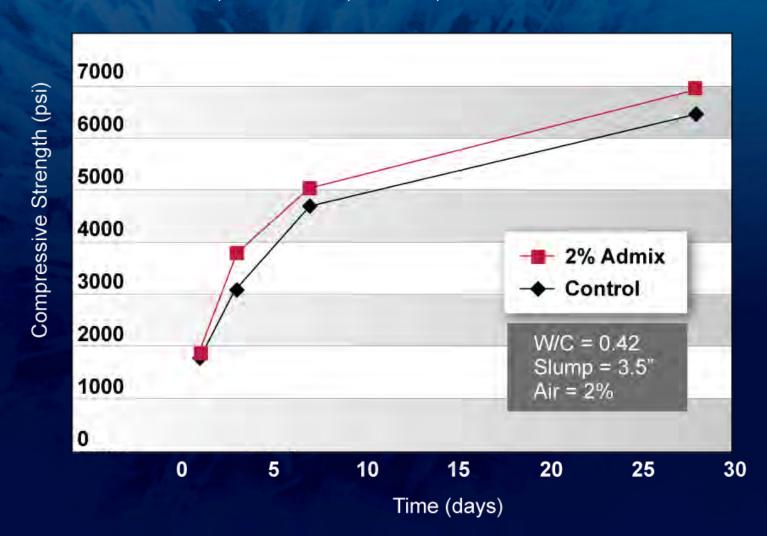
Resistance to carbonation

Slovenska Akademia Vied, Institute of Construction and Architecture (Bratislava 2002)


Plain Mortar (51)	Mortar with 1 Coat (52)	Mortar with 2 Coats (53)		
3 days	3 days	3 days		
7 days	7 days	7 days		
14 days	14 days	14 days		

Compressive Strength

HBT AGRA, Vancouver, British Columbia, Canada



Compressive Strength

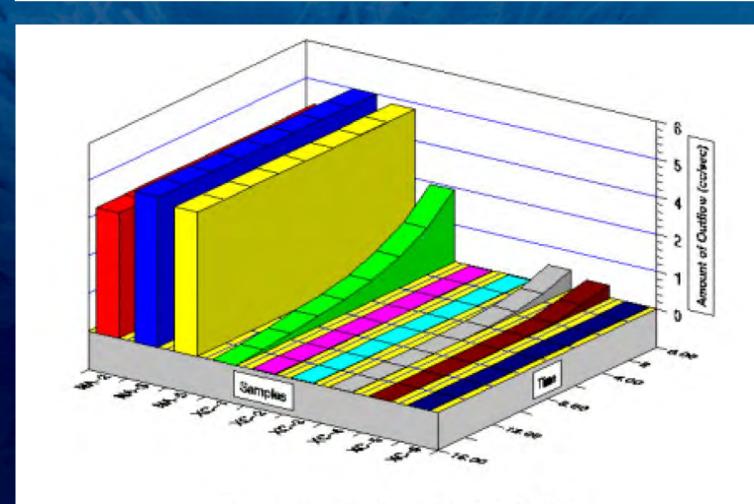
Kleinfelder Laboratories, San Francisco, California, USA

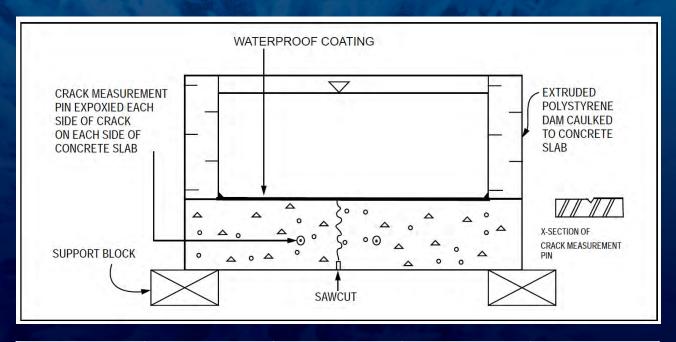
Crack Sealing Test

The Construction Bureau of Chubu District, Japanese Ministry of Construction (Sept 1996)

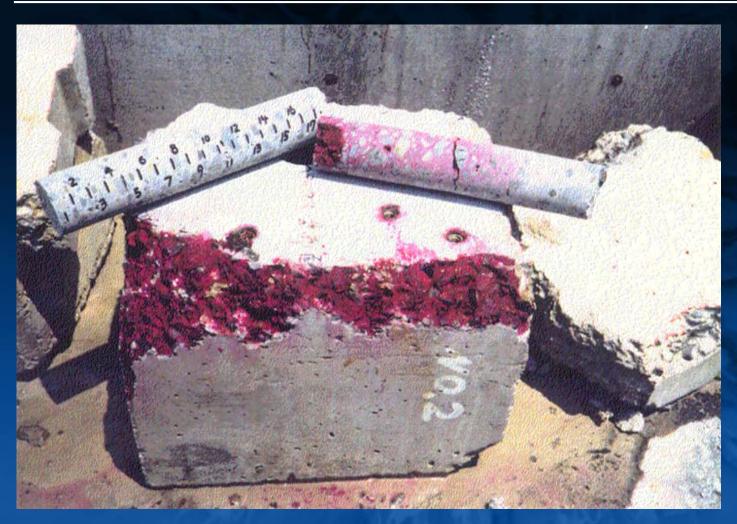
Photo 1: Evidence of cracking in concrete on underside of the deck slab

Crack Sealing Test




Figure 3: Change in Amount of Outflow with Time

Crack Sealing Test


Results of Cracked Slab Test

Sample Series	Materials	Crack Width (mm)	Initial Flow Rate (mm/min)	Time to Stop Leak (days)
Series 1	Xypex	0.2	0.25	35
Series 2	Xypex	1.0	3.50	70

Crystalline waterproofing chemicals can penetrate to a depth of 30 cm or 12" in a year.

Summary of Xypex

- Waterproofs and protects concrete against chemical attack.
- Heals cracks up to 0.4mm
 and reactivates any time with moisture when micro crack occurs.
- Permanent, integral solution
 as a new systems and as a rehabilitation system.
- Advantages of barrier systems, with none of the disadvantages.
- Proven worldwide through thousands of projects successfully completed and independent testing.

Summary of Xypex

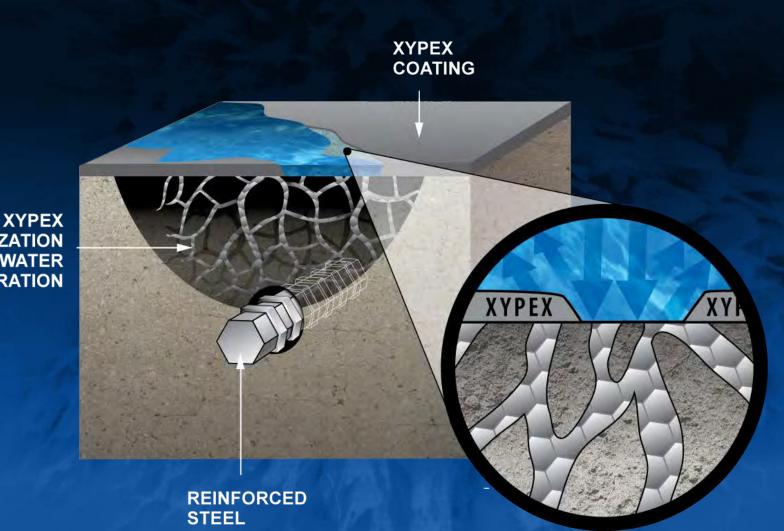
- Extends service life
 amortizing investments over a longer period.
- Reduces maintenance costs allowing for significant savings.
- Makes concrete more environmentally friendly amortizing it's damage over a longer period.
- Adds value to owners, engineers and contractors all around the globe.

Xypex Testing

Xypex products have been extensively and successfully tested by leading, independent scientific laboratories throughout the world for durability permeability and chemical resistance, including JAERI.

- Concentrate
- Modified

Spray Applied



Brush Applied

CRYSTALLIZATION PREVENTS WATER PENETRATION

- Does not require costly surface priming and leveling
- Does not require a dry surface
- Sealing, lapping or finishing is not needed
- Can be applied to both positive and negative side
- No protection required during back-filling
- Can be applied in confined spaces no VOCs
- Crystalline waterproofing penetrates deeply into the concrete substrate and becomes an integral part of the concrete.
- Does not depend on surface adhesion like barrier systems and does not have seams that come apart.
- Permanent, one-time only treatment

Dry batch Central Mix

Pre-cast

- Admix C-500
- Admix C-1000
- Admix C-2000

Also available in NF (no fines) and non-soluble bags.

Ready-mix Concrete

Precast Concrete

Shotcrete

Admix Type	For Normal Waterproofing and Durability	For Extra Chemical Protection or Special Applications
C-500 C-1000 C-2000*	2%	3%
C-500 NF C-1000 NF C-2000 NF*	1%	1.5%

May be used in conjunction with other admixtures

- Set retarders
- Water reducer
- Superplasticizers
- Air-entrainers

Trial Batching is always recommended

- Added at time of batching.
- Minimizes installation costs
- Takes a trade off the job site
- Shortens construction schedule

Patching & Repair

Patch 'n Plug

- Fast setting
- For crack repair and mortar joints with flowing water

Other Patching & Repair

- FCM 80 (Flexible Cementitious Membrane)
- Megamix I and II
- Xycrylic Admix
- Gamma Cure

